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Kink dynamics in finite discrete sine-Gordon chains

Artur Kwaśniewski, Paweł Machnikowski,* and Piotr Magnuszewski
Institute of Physics, Wrocław University of Technology, Wybrzez˙e Wyspian´skiego 27, 50-370 Wrocław, Poland

~Received 19 June 1998; revised manuscript received 21 September 1998!

The dynamics of one-dimensional finite discrete sine-Gordon~Frenkel-Kontorova! chains is studied for
small values of misfit. It is shown that nonintegrability leads to kink trapping at the system surface, stopping
the system motion as a whole and localizing energy at the system boundary. An interpretation from the point
of view of both dislocation dynamics and proton transport is proposed.@S1063-651X~99!00402-X#

PACS number~s!: 36.20.2r, 45.05.1x, 63.20.Ry
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I. INTRODUCTION

Simple models of complex microscopic nonlinear ph
nomena have been used for several decades in va
branches of solid state physics~e.g., Refs.@1–3#!. Recently
they have also been very popular in the description of n
linear transport phenomena in hydrogen bonded chains
in condensed matter and in living systems@4–7#. Such mod-
els are expected to reveal fundamental features of real
tems, allowing, at the same time, for analytical or relative
simple numerical treatments. An analysis of any such mo
not only contributes to the knowledge of a specific syste
but also helps in understanding the general theory of non
ear systems.

One of widely used models is the Frenkel-Kontoro
~FK! model @1#, whose finite version with free ends is d
fined by the Hamiltonian~in dimensionless units!

H5 1
2 (

n51

N

pn
21 (

n51

N

V0~12cosun!1 1
2 (

n51

N21

~un112un2a!2,

~1!

whereun andpn5u̇n are position and momentum of thenth
node, respectively, anda is the misfit between the chai
lattice constant and the substrate period.

The dynamical equations for system~1! have the forms

ü12~u22u12a!1V0sinu150,

ün2D2un1V0sinun50, 2<n<N21,

üN1~uN2uN212a!1V0sinuN50,

where D2un5un1122un1un21 . The continuum limit of
the infinite version of this model—the sine-Gordon~SG!
equation—is exactly solvable; formulas for fundamen
classes of solutions may be obtained by inverse scatte
technique~see, e.g., Ref.@8#! or by Hirota method@9,10#.

The importance of system finiteness was noted a l
time ago by Frank and van der Merwe@2# and Kovalev@11#,
who analyzed the FK model of dislocations in crystals,
well as by Costabileet al. @12# in the study of Josephso
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transmission lines. Certain new aspects and applicat
were described by Pawełek@13# and Kukushkin and Osipov
@14#. However, all those investigations concerned the c
tinuum limit of the model.

Discreteness in a finite system was taken into accoun
Markov and Karaivanov@15# and Braun@16# who analyzed
the static configurations of the FK model and the most
vorable energetic paths joining them. Sharma, Bergsen,
Joos@17# and Braimanet al. @18# studied the Aubry transi-
tion in a finite system, showing that its character is differe
from the continuum case. Stoyanov and Mu¨ller-Krumbhaar
@19# analyzed the dynamics of linear modes around equi
rium configurations, and showed that resonance with ex
nal fields may lead to Brownian motion of a system~as a
whole! over the substrate. All these works deal with sta
configurations or adiabatic motion.

On the other hand, in a description of biological pheno
ena discreteness is considered to be essential, and is us
taken into account. However, finiteness effects have not b
analyzed so far. One may expect system boundaries to
very important for transport phenomena in real systems.

Meanwhile, it is known that finiteness and discreteness
another class of models~Fermi-Pasta-Ulam type! lead to
many interesting dynamical phenomena@20–23#. All this in-
dicates that for a correct description of the dynamics o
finite discrete system, it is essential to take both these
tures into account.

In this paper we study the interplay between system
niteness and discreteness, analyzing the kink dynamics
FK chain. We limit ourselves to the case of small misfit. T
limit of a50 is analyzed in detail providing basis for mo
general conclusions. We show that including nonintegrabi
~here resulting from discreteness! in a description of finite
systems~i.e., in a model discussed, e.g., by Kovalev@11# and
Kukushkin and Osipov@14#! leads to qualitative effect on
system dynamics. In particular, we point out that in a wi
range of system parameters a kink in a discrete chain m
move almost freely along the chain, while during reflecti
from the chain end the radiation is strong enough to for
kink to get trapped.

In spite of using the special model~1! as a background for
the presented discussion, the phenomena described in
following sections are general, and can be expected in a w
class of related systems. The paper is organized as follo

In Sec. II, we review the results concerning the dynam
of a finite continuous SG system with free boundary con
ic
2347 ©1999 The American Physical Society
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tions. The dynamics of a discrete SG~FK! chain with free
boundary conditions is discussed in Sec. III: Discretenes
treated by the collective variable approach in Sec. III
leading to previsions concerning the dynamics of a fin
discrete system. The previsions are verified by the numer
results in Sec. III B. Discussion of the general results of th
sections from the point of view of specific applications
contained in Sec. IV. Section V contains a summary, a
outlooks for further study.

II. CONTINUOUS SYSTEMS

The dynamics of an infinite continuous SG system may
studied by means of the inverse scattering transform, lea
to exact general solutions. These results may be directly
plied to finite or semi-infinite chains. Such an idea was fi
proposed by Frank and van der Merwe@2# who noticed that
cutting the system at a zero-tension point does not influe
its equilibrium.

When the dynamics of a finite SG systems is conside
exact results may be obtained fora50 using the equivalence
between a semi-infinite or finite chain and an infinite cha
with a proper symmetry of the initial conditions. Symmetr
solutions for the SG equation were first used to describe
dynamics of a finite chain by Costabileet al. @12# and Kova-
lev @11#. The idea was also used in Ref.@24# to simplify
numerical simulations of symmetric collisions of kinks a
breathers. It is applicable to other classes of nonlinear m
els, as well~see, e.g., Ref.@25#!.

Below we briefly review results for a semi-infinite sy
tem, assuming that the system is long enough to neglec
opposite end. This is justified since the kink width is usua
equal to a few lattice constants, while chains involved
many physical situations are much longer. Note also tha
the kink width is comparable to the chain length, the kink
identity becomes vague and one deals with a completely
ferent dynamics.

Formally, for any initial state of the system satisfying

u8~x!ux50150, ~2!

the dynamics is equivalent to the dynamics of an infin
system with a smooth, symmetric, initial condition

u~2L !5u~L !, u̇~2L !5u̇~L !.

The dynamics of the SG model involving nonsmooth fie
states is a rather unusual problem. In fact, all cases of lo
ized excitations approaching the chain end from a la
enough distance satisfy the smoothness condition~2!.

Following the exhaustive analysis of Kovalev@11# ~see
also generalization of these results by Pawełek@26#!, one
may, according to the above equivalence, distinguish
regimes of kink dynamics in a semi-infinite system:~1! Lo-
calized surface excitations, i.e., bound states of a kink at
system boundary, corresponding to SG breathers in the
nite system.~2! Free kink movement corresponding~in a
long enough chain! to a collision of the kink with its mirror
image~an antikink moving with opposite velocity!; the col-
lision is centered atx50. After the collision the kink trans-
forms into an antikink and escapes to ‘‘infinity.’’
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The essential point is that the reflection does not cha
the form, energy, or velocity of the kink, except for tran
forming it into an antikink. In the integrable, continuum ca
the kink dynamics is strictly conservative. Due to ener
conservation and the elasticity of interactions, a transit
from the free movement to the bound surface state is imp
sible.

III. DISCRETE SYSTEMS

In this section we will consider the dynamics of a sem
infinite discrete chain in the limita50. We will use a
straightforward generalization of the approach presente
Sec. II.

The system consisting of nodesn51,2, . . . may becon-
sidered as one half of an infiniteextended system. Any initial
condition having the symmetry

u2n5un11 , u̇2n5u̇n11 , n51,2, . . . ~3!

will evolve conserving this symmetry~a formal proof of this
intuitively obvious fact is given in the Appendix!. Sinceu1
5u0 , the first node will not ‘‘feel’’ any force from its left
neighbor. Therefore, the two parts of the chain actually
not interact~although we speak of the interaction of collidin
kinks!, and we have a zero-tension point at any momen
time, corresponding to the ideas of Frank and van der Me
@2#.

The Poynting energy flow between the nodes 0 and 1

P0,15
1

2
~u12u0!~ u̇11u̇0!50.

Hence, there is no energy flow between the real and fictiti
part of the chain, and the energy of the real chain is c
served and equal to half the energy of the extended sys

A. Adiabatic effective potential

To understand the kink dynamics in a semi-infinite d
crete chain, it is very useful to analyze the effective poten
for the kink using the collective variable method. Compar
to more general~applicable foraÞ0) and more exact nu
merical methods@15,16#, this has the advantage of tracin
explicitely the kink position and yielding closed analytic
formulas.

It is possible to apply the collective variable method d
rectly to a finite system. However, both idea and notat
become more clear if the correspondence with the infin
system is applied to reduce the problem to that of discr
kink-antikink interaction in an infinite chain.

The SG breather dynamics in the discrete system
studied by Boesch and Peyrard in Ref.@27#. In that paper the
dynamics of moving subkinks bound in a SG breather w
studied, but the complexity of the dynamical problem
lowed the authors to obtain analytical solutions only in t
bare kink approximation, i.e., no corrections~either localized
or radiative! to the continuous ansatz were taken into a
count. Below we use the method proposed by Willis, E
Batanouny, and Stancioff@28#, and calculate the effective
potential for the kink in a finite system up to the linear ad
batic correction. Then one may assume that a moving k
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corresponds to a particle moving in this potential.
Applying the standard procedure@28#, we introduce the

additional dynamical variablesX, P5Ẋ, related to the po-
sition of the kink center, by

un5 f n~X!1qn , u̇n5Ẋf n8~X!1pn ,

wherepn5q̇n . To keep the number of degrees of freedo
unchanged, two constraints must be introduced,

C15(
n

f n8qn50, C25(
n

f n8pn50, ~4!

where the first one prevents the kink position from be
changed by the correctionqn . As an approximationf n(X) of
the kink shape, we use the kink-antikink superposition c
tered atn5 1

2 :

f n~X!54 arctan exp@AV0~n1X21!#

24 arctan exp@AV0~n2X!#

54 arctanF sinh@AV0~X21/2!#

cosh@AV0~n21/2!#
G , ~5!

which obviously satisfies the symmetry condition~3!. Since
our procedure involves the assumption thatqn are small,f n
should not be very different from the actual discrete soluti
which is true for our choice off n except for high discrete
ness and for kink positions very close to the chain end.

The collective variable Hamiltonian has the form

H5
P2

2M
1 1

2 (
n

pn
21V~X,q!, ~6!

where the potential energy is

V~X,q!5(
n

$ 1
2 ~ f n111qn112 f n2qn!2

1V0@12cos~ f n1qn!#%.

We assume that the correctionqn is small, and expand the
potential to the second order inq5( . . . ,q21 ,q0 ,q1 , . . . ),

V'V~2!5V~ f!2 1
2 ^fuD2uf&2^quF&1 1

2 ^quAuq&,

where the Dirac bracket stands for the usuall 2 scalar prod-
uct, and the following notation has been used:

f5~ . . . ,f 21 , f 0 , f 1 , . . . !, f 85
df

dX
,

V~ f!5(
i

V~ f i !, Vl85V8~ f l !, Vi j9 5V9~ f i !d i , j

~the primes on the right-hand side denote differentiation w
respect to the argument ofV),

@D2# i j 5d i , j 1122d i , j1d i , j 21 ,

A52D21V9, F5D2f2V8.
-

,

h

In order to find the minimum potential energy of the sy
tem with the ansatzf n located at a specificX, one should find
the conditional minimum of the effective potential satisfyin
the constraintC150 @28#. To this end we introduce the
Lagrange multiplierl(X), and minimize the function

Ṽ~X,q!5V~2!~X,q!1l~X!^quf 8&,

with respect toq.
A straightforward calculation leads to the following re

sults:

l~X!52
^FuA21uf 8&

^f 8uA21uf 8&
, q5A21~F1lf 8!

and

Veff~X!5min
q

Ṽ~X,q!5V~ f!2 1
2 ^quD2uF&2 1

2 ^fuD2uf&.

The effective potential calculated in this way correspon
to the extended system. The potential for the semi-infin
chain is equal to1

2 Veff .
The effective potential is plotted in Fig. 1. The potent

has the usual Peierls-Nabarro form far enough from the ch
end, whereas near the end it drops to zero. Hence the kin
attracted by the chain end, as it was in the continuum c
The difference is the periodic modulation of the potential d
to discreteness. A similar form of the effective potential w
obtained in Ref.@27#.

The linear correction is sufficient for obtaining accura
results if its magnitude maxn$qn% is small enough. We have
confirmed that forV0,3 it never exceeds 0.4. The corre
tion is relatively large forX,5 due to the fact that the su
perposition ansatz~5! breaks when the kinks come close
each other, and a considerable correction is neccessar
low values ofX. It also increases forV0.1, but only forX
very close to integer~kink located on a node!. For half-

FIG. 1. Effective potential forV051 ~a! andV053 ~b!.
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integer kink positions the linear correction approximation
still reliable even forV0.3. Thus the potential shape ob
tained with this method is more accurate near its maxim

B. Dynamical effects

Before we analyze the effect of system finiteness on
dynamics, let us briefly summarize the known properties
kink dynamics in a discrete system~first discussed by Currie
et al. @29# and later by Willis and co-workers@28,30#!.
Translational symmetry in the continuum case allows
symmetry-breaking topological solutions to take any of
continuum of equivalent positions in the system. The coll
tive variable in this case corresponds to the symme
restoring Goldstone mode of zero energy. In a discrete
tem, there is no translational symmetry, and the mode rel
to the collective variable@i.e., the one ruled out by the con
straints~4!# has a finite energy gap and is transformed to
Peierls-Nabarro~PN! mode@31#. Globally, it is accepted to
describe kinks as particles moving in an effective Peie
Nabarro potential. Moving discrete kinks radiate ener
@29#; the radiation rate is high especially when the natu
frequencyv152pv is above the lower edge of the phono
spectrum. Large phonon packets are radiated out whenv1

crosses the lower edge of the phonon bandv05AV0. Hence
any initial kink velocity drops almost immediately below th
critical velocity @28#,

vc5
v0

2p
. ~7!

Therefore, only a dynamics with velocities below the critic
one is of practical importance. A higher initial velocity wi
lead only to a higher radiation background, which will intr
duce noise effects into kink dynamics. We will not study th
issue here.

One may expect two important effects related to the
tential well at the chain end. First, since reflection from t
system boundary corresponds to a kink-antikink collis
and the latter is not perfectly elastic in a nonintegrable s
tem, reflection should be accompanied by strong radiat
Second, we expect that the effective potential well at
system end should lead to a kink trapping effect at the s
tem boundary, analogous to the pinning in a PN well, due
energy loss.

Hence we expect that near the continuum limit~displacive
case! the kink dynamics will not differ considerably from th
continuum case. The energy loss will be small, both in
bulk and during reflection.

For stronger~compared to the nearest neighbor couplin!
potentials—i.e., more discrete systems—a kink will radi
more energy during reflection. It may therefore be expec
that any kink will be likely to move from one chain end
the other but most probably will not reflect, staying stuck
the chain end. For still higher discreteness, kinks beco
pinned in the PN well almost at once@29#.

To verify the above ideas, let us study the dynamics o
kink in a SG chain using a numerical simulation. The ki
behavior is examined for various values of potential am
tude ~discreteness!. Interaction with a random phononi
background, always present in a nonintegrable syst
e
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makes it impossible to draw strict general conclusions on
grounds of numerical results. Nevertheless, it is possible
single out and discuss a number of typical dynamical s
narios depending on the degree of discreteness. The sim
tions were performed using theSWARM @32# package and the
symplectic integration algorithm@33#.

In the first numerical experiment, we examined the infl
ence of the effective potential well at the chain end
launching a slow kink (v520.01) from various nodes in a
chain of medium discreteness (V051, N5200 nodes!. We
analyzed the dependence between initial and final kink p
tions ~Fig. 2!. To some extent the final position is random
which is caused by collisions with phonons disturbing t
kink motion. However, the main trend is clear: in centr
parts of the chain the kink can travel a distance of appro
mately 12 nodes before it is pinned in a PN well. On t
other hand, the kink is never pinned on one of the first th
nodes which belong to the effective potential well at t
chain end~see Fig. 1!. Moreover, a kink is never reflected
no matter how close to the system boundary it began.
kinks that reach the chain end stay stuck. Hence it is c
that the energy radiated by a kink while reflecting from t
chain end~crossing the effective potential well! is much
larger than the energy lost over the same distance in
chain.

Our second numerical experiment led to a quantitat
estimation of the energy loss due to reflection. We measu
the energy radiated by a kink starting from the 20th node
the chain, reflecting and returning to the 20th node. This w
compared to the energy radiated by a kink travelling
nodes in the central part of a chain with the same ini
velocity. The difference may be considered to be energy l
due only to reflection. In this experiment, kink velocitie
were close to~but lower than! the critical velocityvc @Eq.
~7!# for a given potential amplitudeV0 . The results are
shown in Fig. 3.

For low potential amplitudes~close to the continuum
limit ! the kink behaves like in the continuous system. T
kink reflects from the chain end undergoes a change into
antikink. The energy loss due to reflection~corresponding to
collision with the kink’s image! is small and, e.g., forV0
50.2 equalsDe/e50.06%. There is only a very weak de
pendence on the kink velocity. An energy-density graph
the system dynamics in this case is shown in Fig. 4. V

FIG. 2. Dependence between initial (ni) and final (nf) positions
of a slow kink moving toward the chain end forV051, initial
velocity v520.01. The straight line shows the trend obtained
linear regression.
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little radiation is produced both during normal traveling a
at the moment of reflection. Moreover, in the continuu
limit the SG kink does not interact with phonons. Therefo
there are also no effects related to kink-phonon interacti

Increasing the potential amplitudeV0 results in growing
system discreteness. The kink dynamics becomes affecte
the PN potential. Nonintegrability results in kink-phonon i
teraction of two kinds: phonon emission@29,30# and kink-
phonon scattering. On the energy-density diagram~Fig. 5!
one can see phonon packets radiated att50 and during re-
flection (t5400). The former is due to a dynamical adjus
ing of our numerical ansatz to the real kink shape. The la
is much larger, and causes a considerable decrease o
kink energy~cf. Fig. 3!, noticeable in Fig. 5 as a lowering o
the kink velocity after reflection. The kink-phonon intera
tion induced by discreteness is also evident, giving rise t
‘‘sea’’ of phononic excitations localized between the kin
and the chain end.

From collective variable estimations~Sec. III A! it is clear
that the potential well formed at the chain end is mu
deeper than the PN well~cf. Fig. 1!. On the other hand, the
energy loss due to an inelastic collision with the kink’s im
age grows much faster than the radiation rate during nor
traveling~cf. Fig. 3!. For potential amplitudesV0'0.6, only
kinks with velocities higher than a certain threshold ha
enough energy to reflected, while slower ones stay stuc
the chain end. Finally, forV0'0.8 the threshold velocity

FIG. 3. Energy loss due to reflection from the chain end
various potential amplitudesV0 .

FIG. 4. Energy density diagram of the system dynamics
V050.3 and initial kink velocityv520.08. The gray scale corre
sponds to the logarithm of the energy density.
,
.

by

r
the

a

al

e
at

becomes equal to the critical velocityvc and no kink may be
reflected. An example is shown in Fig. 6. Much energy
radiated during reflection, and the kink becomes pinned
the effective potential well at the system end. When the k
oscillates at the chain end, the higher harmonics of its
quency are in resonance with the phonon spectrum, wh
results in strong radiation, clearly seen in Fig. 6.

IV. DISCUSSION

As shown in the preceding sections, discreteness stro
modifies the dynamics of a finite SG system. In a continuo
system a kink moves in a periodic way with perfectly elas
reflections from the system boundaries~surfaces!. Each pe-
riod of kink motion results in shifting the system, as a who
by two substrate periods. Conversely, in a discrete sys
the kink is very likely to be trapped at the surface. For lar
enough discreteness (V0.0.8), no kink traveling with an
allowed velocityv,vc may be reflected from the system

r

r

FIG. 5. Energy density diagram of the system dynamics
V050.6 and initial kink velocityv520.11. The gray scale corre
sponds to the logarithm of the energy density, and is the same
Fig. 4.

FIG. 6. Energy density diagram of the system dynamics
V051 and initial kink velocityv520.14. The gray scale corre
sponds to the logarithm of the energy density, and is the same
Figs. 4 and 5.
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end. Although~as has been known for some time@29#! there
is also some probability of pinning in a Peierls-Nabarro w
in bulk, the amount of emitted radiation is much larger d
ing reflection, and most kinks may be expected to be trap
at the system boundary and converted into surface mo
after having traveled along the chain once or more times

This effect prevents the permanent movement of the s
tem as a whole, which may be important for the physics
dislocations in solids. Kukushkin and Osipov@14# studied
the continuous SG equation as a model for dislocation k
dynamics in thin films. They pointed out that such a ki
dynamics explains qualitatively the experimentally observ
effect of cluster migration@34,35#, but results in an infinite
diffusion coefficient. As we have shown, nonintegrabil
provides the neccessary dissipation mechanism. Note
this mechanism is inherent to the system and not relate
external forces, impurities, etc.

On the other hand, in biological systems the idea of s
tem movement as a whole has no sense. Instead, transp
energy and charge~protons in hydrogen bonds! within the
chain is of interest. The kink trapping effect provides t
possibility of locking the proton sublattice of the hydrog
bonded chain in a specific configuration after one kink p
sage, thus enabling effective proton transport. In additi
energy becomes localized at the system end for a relati
long time before it is radiated out.

It is important to note that the FK system is very spec
in at least two respects: it is exactly integrable in the c
tinuum limit, and it does not support kink internal mode
except in a narrow range of parameters@31#.

Exact integrability is a special property of a narrow cla
of models that cannot be expected in real systems. On
other hand, it should be stressed that actually it isnoninte-
grability and not discreteness that underlies the inelasti
of kink reflection~cf. the comparison of two discrete mode
in Ref. @25#!, although growing discreteness enhances
effects of nonintegrability. Thus kink trapping at the syste
surface may be typical of a general class of systems, inc
ing continuous ones.

Another aspect of exact integrability of the SG model
the existence of breathers in continuous systems. In gen
nonintegrable systems, breathers may exist only if the de
of discreteness is high enough@36#. Therefore, no stable sur
face modes may exist in such systems close to the contin
limit, unless the system properties are modified at its e
@37#. Thus the free kink–surface state transition may ha
different properties in other models, where the final surfa
state is instable.

Recently it was shown@38# that even a small perturbatio
to an integrable equation results in the appearance of inte
modes. The existence of such modes leads to many intr
ing phenomena when kink-antikink collisions are consider
even in continuous models@39–41#. The dynamics of a finite
system will therefore also be complex. All these phenom
are missed when the FK model is considered.

In spite of these special features of the FK~SG! model,
the phenomenon of kink trapping may be expected to app
in any nonlinear Klein-Gordon system (f4, double-Morse
@42#!. Most such systems are nonintegrable even in the c
tinuum limit, and support shape modes which will increa
the number of possible dynamical scenarios. Nonetheles
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any of such models discreteness increases radiation both
ing normal kink motion and at reflection, leading to increa
ing trapping effects for larger amplitudes of the on-site p
tential.

In our discussion we neglected the misfit between
nearest neighbor interaction and the period of the subst
potential. The results may easily be generalized for nonz
misfit, values lower than the critical misfit, above which t
ground state of the system contains kinks. Fora.0, kinks
@u8(x).0# have lower energy than antikinks~the opposite is
true for a,0). Therefore, reflections with kink→ antikink
transition lead to energy gain and kink acceleration~see Fig.
7!. Due to radiative loss the kink usually has too little ener
to transform back into an antikink when it arrives at t
opposite end. Therefore, it reflects without transition or
trapped. Thus nonzero misfit introduces the additional eff
of asymmetry between a kink and antikink and between
two kinds of reflections, but it does not otherwise influen
the effects described above.

It may be noted that in the general case ofaÞ0 there is
no mirror symmetry, and the equivalence between finite a
infinite systems no longer holds. Thus the continuum res
of Refs.@11# and @14# actually correspond to the zero-misfi
case. The zero-tension condition of Frank and van
Merwe @2# would not be satisfied in the center of a symm
ric solution ~breather or kink-antikink! for aÞ0.

Finally, let us note that the dynamics of finite FK-typ
systems in higher dimensions may be reduced to the dyn
ics of infinite systems with appropriate symmetry. Hence,
existence of nonlinear surface modes is guaranteed by t
rems on the existence of breathers, provided that the disc
ness is high enough@43,44#.

V. CONCLUSION AND OUTLOOK

We have shown that unlike in the continuous model,
the discrete case a free kink may become trapped at the
of a chain due to inealistic scattering from the chain end. T

FIG. 7. Energy density diagram of the system dynamics foa
50.01,V050.6, and initial kink velocityv520.1. The gray scale
corresponds to the logarithm of the energy density, and is the s
as in previous figures. Note that the kink accelerates at the
collision, but does not slow down at the second one: there is
transition into an antikink.



ha
e
n
e

d

.

al
v
it

om

ec
e
y

m
rifi
de

r
m

tate
3B

e
e

nly

PRE 59 2353KINK DYNAMICS IN FINITE DISCRETE SINE- . . .
probability of such an effect is considerably higher than t
of pinning in a PN potential well. In particular, we hav
shown that slow kinks always get stuck at the system e
whereas faster ones may be reflected with some loss of
ergy depending on the system discreteness~the potential am-
plitudeV0 in our system!. Since fast kinks radiate energy an
their speed drops very quickly below the~discreteness-
dependent! critical velocity, the kink energy is also limited
We have found out that, forV0'0.8, even kinks moving
with this maximal velocity cannot be reflected; hence
kinks are transformed in bound surface states. This beha
may be interpreted in terms of both dislocation dynamics
described by the FK model and nonlinear transport phen
ena, including those in biological systems.

It seems reasonable to continue the study in two dir
tions: ~1! Higher values of misfit might be included to mak
the model more realistic in its description of dislocation d
namics.~2! Other models (w4, double-Morse! might be ana-
lyzed to study the effect of nonintegrability in the continuu
limit and of the existence of shape modes. Numerical ve
cation of existence of higher-dimensional surface mo
would also be very interesting.
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APPENDIX

We will show here that if the initial condition has th
symmetry ~3!, then this symmetry is conserved during th
time evolution. Indeed, in new coordinateszn5(un
2u2n11)/2,hn5(un1u2n11)/2, the equations of motion
have the forms

z̈n5D2zn2 1
2 V8~hn1zn!1 1

2 V8~hn2zn!,

zn~0!50, żn~0!50,

ḧn5D2hn2 1
2 V8~hn1zn!2 1

2 V8~hn2zn!,

hn~0!5hn
~0! , ḣn~0!5hn

~1! .

These equations obviously have a solution withzn(t)[0 and
hn(t), satisfying

ḧn5D2hn2V8~hn!, hn~0!5hn
~0! , ḣn~0!5hn

~1! .

By its uniqueness, such a symmetric solution is the o
possible one.
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