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Kink dynamics in finite discrete sine-Gordon chains
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The dynamics of one-dimensional finite discrete sine-Gortfnenkel-Kontorova chains is studied for
small values of misfit. It is shown that nonintegrability leads to kink trapping at the system surface, stopping
the system motion as a whole and localizing energy at the system boundary. An interpretation from the point
of view of both dislocation dynamics and proton transport is propdstD63-651X%99)00402-X]

PACS numbgs): 36.20—r, 45.05+x, 63.20.Ry

[. INTRODUCTION transmission lines. Certain new aspects and applications
were described by Pawel¢k3] and Kukushkin and Osipov
Simple models of complex microscopic nonlinear phe-[14]. However, all those investigations concerned the con-
nomena have been used for several decades in variogi®uum limit of the model.
branches of solid state physiés.g., Refs[1-3]). Recently Discreteness in a finite system was taken into account by
they have also been very popular in the description of nonmarkov and Karaivanoy15] and Braun[16] who analyzed
linear transport phenomena in hydrogen bonded chains bothe static configurations of the FK model and the most fa-
in condensed matter and in living systepds-7]. Such mod-  vorable energetic paths joining them. Sharma, Bergsen, and
els are expected to reveal fundamental features of real sygoos[17] and Braimaret al. [18] studied the Aubry transi-
tems, allowing, at the same time, for analytical or relativelytion in a finite system, showing that its character is different
simple numerical treatments. An analysis of any such modéerom the continuum case. Stoyanov and IMuKrumbhaar
not only contributes to the knowledge of a specific system[19] analyzed the dynamics of linear modes around equilib-
but also helps in understanding the general theory of nonlinrium configurations, and showed that resonance with exter-
ear systems. nal fields may lead to Brownian motion of a systéas a
One of widely used models is the Frenkel-Kontorovawhole) over the substrate. All these works deal with static
(FK) model[1], whose finite version with free ends is de- configurations or adiabatic motion.
fined by the Hamiltoniartin dimensionless unis On the other hand, in a description of biological phenom-
N N N—1 ena discreteness is considered to be essential, and is usually
1 2 1 2 taken into account. However, finiteness effects have not been
H_Enz*l p”+n§=:1 VO(l_COSU”HEnE::l (Un+1=Un=2)%, analyzed so far. One may expect system boundaries to be
(1)  very important for transport phenomena in real systems.

) Meanwhile, it is known that finiteness and discreteness in
whereu, andp,=u, are position and momentum of ti¢h  another class of model&ermi-Pasta-Ulam typelead to
node, respectively, and is the misfit between the chain many interesting dynamical phenomdi2@—23. All this in-
lattice constant and the substrate period. dicates that for a correct description of the dynamics of a

The dynamical equations for systgf) have the forms  finite discrete system, it is essential to take both these fea-
tures into account.

U;— (Up—uy—a)+Vesinu; =0, In this paper we study the interplay between system fi-
niteness and discreteness, analyzing the kink dynamics in a
Un— AU, +Vesinu,=0, 2<n<N-1, FK chain. We limit ourselves to the case of small misfit. The
limit of a=0 is analyzed in detail providing basis for more
Un+ (Uy—Uy_1—a)+ Vgsinuy=0, general conclusions. We show that including nonintegrability

(here resulting from discretengsis a description of finite
where A,u,=u,;—2u,+U,_;. The continuum limit of systemdi.e., in a model discussed, e.g., by Kovajét] and
the infinite version of this model—the sine-Gord¢8G) Kukushkin and Osipoy14]) leads to qualitative effect on
equation—is exactly solvable; formulas for fundamentalsystem dynamics. In particular, we point out that in a wide
classes of solutions may be obtained by inverse scatteringinge of system parameters a kink in a discrete chain may
technique(see, e.g., Ref8]) or by Hirota method9,10]. move almost freely along the chain, while during reflection
The importance of system finiteness was noted a longrom the chain end the radiation is strong enough to for the
time ago by Frank and van der Menj2] and Kovalef11],  kink to get trapped.
who analyzed the FK model of dislocations in crystals, as In spite of using the special moddl) as a background for
well as by Costabileet al. [12] in the study of Josephson the presented discussion, the phenomena described in the
following sections are general, and can be expected in a wide
class of related systems. The paper is organized as follows.
* Author to whom correspondence should be addressed. Electronic In Sec. Il, we review the results concerning the dynamics
address: machnik@rainbow.if.pwr.wroc.pl of a finite continuous SG system with free boundary condi-
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tions. The dynamics of a discrete SEK) chain with free The essential point is that the reflection does not change
boundary conditions is discussed in Sec. lll: Discreteness ithe form, energy, or velocity of the kink, except for trans-

treated by the collective variable approach in Sec. Ill A,forming it into an antikink. In the integrable, continuum case

leading to previsions concerning the dynamics of a finitethe kink dynamics is strictly conservative. Due to energy

discrete system. The previsions are verified by the numericalonservation and the elasticity of interactions, a transition
results in Sec. Il B. Discussion of the general results of thesérom the free movement to the bound surface state is impos-
sections from the point of view of specific applications is sible.

contained in Sec. IV. Section V contains a summary, and

outlooks for further study. Ill. DISCRETE SYSTEMS

In this section we will consider the dynamics of a semi-
infinite discrete chain in the limia=0. We will use a

The dynamics of an infinite continuous SG system may bétraightforward generalization of the approach presented in
studied by means of the inverse scattering transform, leadingec. Il.
to exact general solutions. These results may be directly ap- The system consisting of nodes=1,2, ... may becon-
plied to finite or semi-infinite chains. Such an idea was firstsidered as one half of an infiniextended systenAny initial
proposed by Frank and van der Merj®& who noticed that ~ condition having the symmetry
cutting the system at a zero-tension point does not influence i )
its equilibrium. U_n=Upt1, U_p=Upyg, N=12,..0 3

When the dynamics of a finite SG systems is considered, ) _ _
exact results may be obtained ¢ 0 using the equivalence Will evolve conserving this symmetia formal proof of this
between a semi-infinite or finite chain and an infinite chain,intuitively obvious fact is given in the AppendixSinceu,
with a proper symmetry of the initial conditions. Symmetric = Uo. the first node will not “feel” any force from its left
solutions for the SG equation were first used to describe thBeighbor. Therefore, the two parts of the chain actually do
dynamics of a finite chain by Costabi¢ al.[12] and Kova- ~ hot interact(although we speak of_ the interaction of colliding
lev [11]. The idea was also used in RéR4] to simplify kmks), and we hgve a zerp—tensmn point at any moment of
numerical simulations of symmetric collisions of kinks and time, corresponding to the ideas of Frank and van der Merwe
breathers. It is applicable to other classes of nonlinear mod2]- ) )
els, as well(see, e.g., Ref25)). The Poynting energy flow between the nodes 0 and 1 is

Below we briefly review results for a semi-infinite sys-
tem, assuming that the system is long enough to neglect the
opposite end. This is justified since the kink width is usually
equal to a few lattice constants, while chains involved in . o
many physical situations are much longer. Note also that iHence, there is no energy flow between the real and fictitious
the kink width is comparable to the chain length, the kink’sPart of the chain, and the energy of the real chain is con-
identity becomes vague and one deals with a completely difserved and equal to half the energy of the extended system.
ferent dynamics.

Formally, for any initial state of the system satisfying A. Adiabatic effective potential

II. CONTINUOUS SYSTEMS

1 . .
Po,lzi(ul_uo)(uﬁ‘ Ug)=0.

To understand the kink dynamics in a semi-infinite dis-
crete chain, it is very useful to analyze the effective potential
L ) ) . ... for the kink using the collective variable method. Compared
the dynar_nlcs is equivalent to t_he_d_y_namlcs_(_)f an infinitey more generalapplicable fora#0) and more exact nu-
system with a smooth, symmetric, initial condition merical methodg§15,16, this has the advantage of tracing

i i explicitely the kink position and yielding closed analytical
u(=L)=u(L), u(=L)=u(L). formulas.
It is possible to apply the collective variable method di-
The dynamics of the SG model involving nonsmooth fieldrectly to a finite system. However, both idea and notation
states is a rather unusual problem. In fact, all cases of locabecome more clear if the correspondence with the infinite
ized excitations approaching the chain end from a largeystem is applied to reduce the problem to that of discrete
enough distance satisfy the smoothness condi@pn kink-antikink interaction in an infinite chain.

Following the exhaustive analysis of Kovalgll] (see The SG breather dynamics in the discrete system was
also generalization of these results by Pawd2&]), one studied by Boesch and Peyrard in Ref7]. In that paper the
may, according to the above equivalence, distinguish twalynamics of moving subkinks bound in a SG breather was
regimes of kink dynamics in a semi-infinite systefh} Lo-  studied, but the complexity of the dynamical problem al-
calized surface excitations, i.e., bound states of a kink at thibwed the authors to obtain analytical solutions only in the
system boundary, corresponding to SG breathers in the infbare kink approximation, i.e., no correctiof@sther localized
nite system.(2) Free kink movement correspondifd a  or radiative to the continuous ansatz were taken into ac-
long enough chainto a collision of the kink with its mirror  count. Below we use the method proposed by Willis, El-
image(an antikink moving with opposite velocitythe col- Batanouny, and Stancioff28], and calculate the effective
lision is centered ax=0. After the collision the kink trans- potential for the kink in a finite system up to the linear adia-
forms into an antikink and escapes to “infinity.” batic correction. Then one may assume that a moving kink

U’ (X)|x=o+ =0, )
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corresponds to a particle moving in this potential. 7.9
Applying the standard proceduf@8], we introduce the -
additional dynamical variableX, P=X, related to the po- _
sition of the kink center, by =
Up="Fn(X)+0,, '-Jn:Xfr;(X)‘l'pna = 1
7.8
where pn=qn. To keep the number of degrees of freedom -
unchanged, two constraints must be introduced, ] - T T T T 1
X
Ci=2 f1an=0, Co=2 f;p,=0, @ 14
where the first one prevents the kink position from being ]
changed by the correctiam), . As an approximatioti,(X) of = 137
the kink shape, we use the kink-antikink superposition cen- ;% ]
tered atn=3: -
f.(X)=4 arctan expyVo(n+X—1)] 127
— 4 arctan expyVo(n—X)] o 2 4 &5 8
X
=4 arcta sint \/V_O(X_ 1/2)] , (5) FIG. 1. Effective potential foNy=1 (a) andVy=3 (b).
cosii\Vo(n—1/2)]

In order to find the minimum potential energy of the sys-
which obviously satisfies the symmetry conditi8). Since  tem with the ansat, located at a specifi¥, one should find
our procedure involves the assumption thatare small,f,  the conditional minimum of the effective potential satisfying
should not be very different from the actual discrete solutionthe constraintC;=0 [28]. To this end we introduce the

which is true for our choice of, except for high discrete- |agrange multipliei (X), and minimize the function
ness and for kink positions very close to the chain end.

The collective variable Hamiltonian has the form V(X,q)=VP(X,q)+ N (X)(qf"),
2 .
_ 5 with respect tag.
H= m+ %zn: Pt V(X.0), ©) A straightforward calculation leads to the following re-
sults:
where the potential energy is 1les

_ (RIATHEY ,

)\(X)——W, q—A (F‘F)\f )
VX@=3 {3 (feitGnes = foGo)? (A

and

+Vo[1—cos fo+qn)]l}. - 1 1
o Ver(X)=minV(X,q) =V(f) = 3(q[A,|F) — 3(f|A,|f).
We assume that the correctigp is small, and expand the q

potential to the second order q=( ...,9-1,99,91, - - - ), , - in thi
1Go. G The effective potential calculated in this way corresponds

V=~V =V(f)— 3(f|A,|f) —(qIF) + 3(q|Alq), to the extended system. The potential for the semi-infinite
chain is equal tG V.
where the Dirac bracket stands for the usiyascalar prod- The effective potential is plotted in Fig. 1. The potential
uct, and the following notation has been used: has the usual Peierls-Nabarro form far enough from the chain
end, whereas near the end it drops to zero. Hence the kink is
f=(...f 1 f0.fs ), f'= ﬂ attracted by the chain end, as it was in the continuum case.
oy ' dax’ The difference is the periodic modulation of the potential due

to discreteness. A similar form of the effective potential was
obtained in Ref[27].

The linear correction is sufficient for obtaining accurate
results if its magnitude mafg,} is small enough. We have

(the primes on the right-hand side denote differentiation withconfirmed that forVy<3 it never exceeds 0.4. The correc-

V<f>=2i V(f), Vi=VI(f), Vi=V(f)s

respect to the argument bf), tion is relatively large forX<<5 due to the fact that the su-
perposition ansatzs) breaks when the kinks come close to
[As]ij=6ij+1— 26 j+ 6 -1, each other, and a considerable correction is neccessary for

low values ofX. It also increases fovy>1, but only forX
A=—A,+V", F=Af-V'. very close to integefkink located on a node For half-
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integer kink positions the linear correction approximation is
still reliable even forVy>3. Thus the potential shape ob-
tained with this method is more accurate near its maxima.

B. Dynamical effects = 404

Before we analyze the effect of system finiteness on the ]

dynamics, let us briefly summarize the known properties of 207

kink dynamics in a discrete systeffirst discussed by Currie .

et al. [29] and later by Willis and co-worker$28,30). 0-
Translational symmetry in the continuum case allows the 0 20 40 60 80 100

n;

symmetry-breaking topological solutions to take any of the

continuum of equivalent positions in the system. The collec- G, 2. pependence between initia, and final ;) positions
tive variable in this case corresponds to the symmetryof a slow kink moving toward the chain end fafy=1, initial
restoring Goldstone mode of zero energy. In a discrete SySselocity v=—0.01. The straight line shows the trend obtained by
tem, there is no translational symmetry, and the mode relateghear regression.

to the collective variabléi.e., the one ruled out by the con-

straints(4)] has a finite energy gap and is transformed to themakes it impossible to draw strict general conclusions on the

Peierls-NabarrdPN) mode[31]. Globally, it is accepted to grounds of numerical results. Nevertheless, it is possible to

describe kinks as particles moving in an effective Pelerls—Single out and discuss a number of typical dynamical sce-

Nabarro potential. Moving discrete kinks radiate energy,qog depending on the degree of discreteness. The simula-

[29]; the radiation rate is high especially when the naturaltions were performed using tlsvarM [32] package and the
frequencyw;=2mv is above the lower edge of the phonon symplectic integration algorithii83]

spectrum. Large phonon packets are radiated out when 4 first numerical experiment, we examined the influ-
crosses the lower edge of the phonon barne- Wo. Hence  gnce of the effective potential well at the chain end by
any initial kmk velocity drops almost immediately below the launching a slow kink § = —0.01) from various nodes in a
critical velocity [28], chain of medium discretenes¥{=1, N=200 nodes We
analyzed the dependence between initial and final kink posi-
(7 tions (Fig. 2. To some extent the final position is random,
which is caused by collisions with phonons disturbing the
kink motion. However, the main trend is clear: in central
Therefore, only a dynamics with velocities below the critical parts of the chain the kink can travel a distance of approxi-
one is of practical importance. A higher initial velocity will mately 12 nodes before it is pinned in a PN well. On the
lead only to a higher radiation background, which will intro- other hand, the kink is never pinned on one of the first three
duce noise effects into kink dynamics. We will not study thisnodes which belong to the effective potential well at the
issue here. chain end(see Fig. 1L Moreover, a kink is never reflected,
One may expect two important effects related to the pono matter how close to the system boundary it began. All
tential well at the chain end. First, since reflection from thekinks that reach the chain end stay stuck. Hence it is clear
system boundary corresponds to a kink-antikink collisionthat the energy radiated by a kink while reflecting from the
and the latter is not perfectly elastic in a nonintegrable syschain end(crossing the effective potential wells much
tem, reflection should be accompanied by strong radiationlarger than the energy lost over the same distance in the
Second, we expect that the effective potential well at thechain.
system end should lead to a kink trapping effect at the sys- Our second numerical experiment led to a quantitative
tem boundary, analogous to the pinning in a PN well, due testimation of the energy loss due to reflection. We measured
energy loss. the energy radiated by a kink starting from the 20th node of
Hence we expect that near the continuum lidisplacive  the chain, reflecting and returning to the 20th node. This was
case the kink dynamics will not differ considerably from the compared to the energy radiated by a kink travelling 40
continuum case. The energy loss will be small, both in thenodes in the central part of a chain with the same initial
bulk and during reflection. velocity. The difference may be considered to be energy loss
For strongercompared to the nearest neighbor coupling due only to reflection. In this experiment, kink velocities
potentials—i.e., more discrete systems—a kink will radiatewere close to(but lower than the critical velocityv [Eq.
more energy during reflection. It may therefore be expected7)] for a given potential amplitudé/,. The results are
that any kink will be likely to move from one chain end to shown in Fig. 3.
the other but most probably will not reflect, staying stuck at For low potential amplitudegclose to the continuum
the chain end. For still higher discreteness, kinks becomémit) the kink behaves like in the continuous system. The
pinned in the PN well almost at on¢29]. kink reflects from the chain end undergoes a change into an
To verify the above ideas, let us study the dynamics of aantikink. The energy loss due to reflectiGorresponding to
kink in a SG chain using a numerical simulation. The kink collision with the kink's imagg is small and, e.g., foW,
behavior is examined for various values of potential ampli-=0.2 equalsA e/ e=0.06%. There is only a very weak de-
tude (discretenegs Interaction with a random phononic pendence on the kink velocity. An energy-density graph of
background, always present in a nonintegrable systenthe system dynamics in this case is shown in Fig. 4. Very

o

Vo= -
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FIG. 3. Energy loss due to reflection from the chain end for
various potential amplitudeg, .

little radiation is produced both during normal traveling and
at the moment of reflection. Moreover, in the continuum
limit the SG kink does not interact with phonons. Therefore, FIG. 5. Energy density diagram of the system dynamics for
there are also no effects related to kink-phonon interaction.v,=0.6 and initial kink velocityy=—0.11. The gray scale corre-
Increasing the potential amplitudé, results in growing  sponds to the logarithm of the energy density, and is the same as in
system discreteness. The kink dynamics becomes affected I5jg. 4.
the PN potential. Nonintegrability results in kink-phonon in-
teraction of two kinds: phonon emissi¢@29,30 and kink-  becomes equal to the critical velocity and no kink may be
phonon scattering. On the energy-density diagi@&ig. 5 reflected. An example is shown in Fig. 6. Much energy is
one can see phonon packets radiatet=ed and during re- radiated during reflection, and the kink becomes pinned in
flection {=400). The former is due to a dynamical adjust- the effective potential well at the system end. When the kink
ing of our numerical ansatz to the real kink shape. The latteoscillates at the chain end, the higher harmonics of its fre-
is much larger, and causes a considerable decrease of thaeency are in resonance with the phonon spectrum, which
kink energy(cf. Fig. 3, noticeable in Fig. 5 as a lowering of results in strong radiation, clearly seen in Fig. 6.
the kink velocity after reflection. The kink-phonon interac-

tion induced by djscrett_ane;s is also_ evident, giving rise.to a IV. DISCUSSION
“sea” of phononic excitations localized between the kink
and the chain end. As shown in the preceding sections, discreteness strongly

From collective variable estimatioriSec. Il A) it is clear ~ modifies the dynamics of a finite SG system. In a continuous
that the potential well formed at the chain end is muchsystem a kink moves in a periodic way with perfectly elastic
deeper than the PN weltf. Fig. 1). On the other hand, the reflections from the system boundarigsirfaces Each pe-
energy loss due to an inelastic collision with the kink’s im- riod of kink motion results in shifting the system, as a whole,
age grows much faster than the radiation rate during normdly two substrate periods. Conversely, in a discrete system
traveling (cf. Fig. 3). For potential amplitude¥,~0.6, only  the kink is very likely to be trapped at the surface. For large
kinks with velocities higher than a certain threshold haveenough discreteness/¢>0.8), no kink traveling with an
enough energy to reflected, while slower ones stay stuck atllowed velocityv<v. may be reflected from the system
the chain end. Finally, foy~0.8 the threshold velocity

FIG. 6. Energy density diagram of the system dynamics for
FIG. 4. Energy density diagram of the system dynamics forVo=1 and initial kink velocityv=—0.14. The gray scale corre-
V,=0.3 and initial kink velocityv =—0.08. The gray scale corre- sponds to the logarithm of the energy density, and is the same as in
sponds to the logarithm of the energy density. Figs. 4 and 5.
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end. Although(as has been known for some tiff9]) there

is also some probability of pinning in a Peierls-Nabarro well
in bulk, the amount of emitted radiation is much larger dur-
ing reflection, and most kinks may be expected to be trapped
at the system boundary and converted into surface modes
after having traveled along the chain once or more times.

This effect prevents the permanent movement of the sys- -
tem as a whole, which may be important for the physics of
dislocations in solids. Kukushkin and Osip§¥4] studied
the continuous SG equation as a model for dislocation kink
dynamics in thin films. They pointed out that such a kink
dynamics explains qualitatively the experimentally observed
effect of cluster migratioi34,35, but results in an infinite - )
diffusion coefficient. As we have shown, nonintegrability ’ - 50 100 150
provides the neccessary dissipation mechanism. Note that n
this mechanism is inherent to the system and not related to o )
external forces, impurities, etc. FIG. 7. Energy d_enslty gllagram pf the system dynamicsafor

On the other hand, in biological systems the idea of sys— 2:01V0=0.6, and initial kink velocity = ~0.1. The gray scale
tem movement as a whole has no sense. Instead, transport G7eSPONds 1 the logatithm of the energy density, and is the same

. o as in previous figures. Note that the kink accelerates at the first
ene_rgy_ and _Chargéprotons _m hydrogen bonid:w'th'r.‘ the collision, but does not slow down at the second one: there is no
cham_ is of interest. The kink trapping effect provides they . cition into an antikink.
possibility of locking the proton sublattice of the hydrogen

bonded chain in a specific configuration after one kink pas- ¢ h models di ¢ . diation both d
sage, thus enabling effective proton transport. In additiond"Y OF SUCh MOGEIS CISCréteness increéases radiation both aur-
ng normal kink motion and at reflection, leading to increas-

energy becomes localized at the system end for a relativel, . ; .
long time before it is radiated out. 'ﬁ%tit;?ppmg effects for larger amplitudes of the on-site po-
| .

It is important to note that the FK system is very specia _ . .
b y y sP In our discussion we neglected the misfit between the

in at least two respects: it is exactly integrable in the con- . . : .
tinuum limit, and it does not support kink internal modes,nearest neighbor interaction and the period of the substrate

except in a narrow range of parameti4] potential. The results may easily be generalized for nonzero
Exact integrability is a special property./ of a narrow CIassmisfit, values lower than the critical misfit, above which the

of models that cannot be expected in real systems. On t (?und state of the system contains Ignks. BorO, kmk;
other hand, it should be stressed that actually nasinte- u’(x)>0] have lower energy tha_m ant|l_<|nI(<E|_ne OppO_SI'_[e IS
grability and not discreteness that underlies the inelasticitf™U€ fora<0). Therefore, reflections with kink- antikink

of kink reflection(cf. the comparison of two discrete models ransition lead to energy gain and kink acceleratisee Fig.

in Ref. [25]), although growing discreteness enhances thd)- Due to radiative !oss the k|nI§ gsually ha; too !lttle energy
effects of nonintegrability. Thus kink trapping at the system(© transform back into an antikink when it arrives at the
surface may be typical of a general class of systems, includ2PPOsite end. Therefore, it reflects without transition or is
ing continuous ones. trapped. Thus nonzero misfit introduces the additional effect

Another aspect of exact integrability of the SG model isOf @ymmetry between a kink and antikink and between the

the existence of breathers in continuous systems. In generjgo kinds of reflgcnons, but it does not otherwise influence
nonintegrable systems, breathers may exist only if the degrég® €ffects described above. .
of discreteness is high enouf®6)]. Therefore, no stable sur- |t May be noted that in the general caseasf0 there is
face modes may exist in such systems close to the continuuftP, Mirror symmetry, and the equivalence between finite and
limit, unless the system properties are modified at its endnfinite systems no longer holds. Thus the continuum r(_esylts
[37]. Thus the free kink—surface state transition may havéf Refs.[11] and[14] gctually cgrrespond to the zero-misfit
different properties in other models, where the final surfac&@S€- The zero-tension condition of Frank and van der
state is instable. Merwe [2] would not be satisfied in the center of a symmet-
Recently it was showfB8] that even a small perturbation "iC Solution (breather or kink-antikinkfor a+0.

to an integrable equation results in the appearance of internal Finally, let us note that the dynamics of finite FK-type
modes. The existence of such modes leads to many intrigfYSt€ms in higher dimensions may be reduced to the dynam-

ing phenomena when kink-antikink collisions are considered!CS Of infinite systems with appropriate symmetry. Hence, the
even in continuous modef89—41. The dynamics of a finite existence of nqnllnear surface modes is guaranteed by theo-
system will therefore also be complex. All these phenomen&€MS 0N the existence of breathers, provided that the discrete-
are missed when the FK model is considered. ness is high enough3,44.

In spite of these special features of the FBG) model,
the phenomenon of kink trapping may be expected to appear
in any nonlinear Klein-Gordon systems{, double-Morse
[42]). Most such systems are nonintegrable even in the con- We have shown that unlike in the continuous model, in
tinuum limit, and support shape modes which will increasethe discrete case a free kink may become trapped at the end
the number of possible dynamical scenarios. Nonetheless, of a chain due to inealistic scattering from the chain end. The

2000 5=

1000+

V. CONCLUSION AND OUTLOOK
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probability of such an effect is considerably higher than thaiments. P. Machnikowski was supported by the Polish State
of pinning in a PN potential well. In particular, we have Committee for Scientific Research under Grant No. 2 PO3B
shown that slow kinks always get stuck at the system end)89 14.

whereas faster ones may be reflected with some loss of en-

ergy depending on the system discreter{iéfss potential am- APPENDIX
plitudeV, in our system Since fast kinks radiate energy and . _ L .
their speed drops very quickly below th@iscreteness- We will show here that if the initial condition has the

dependentcritical velocity, the kink energy is also limited. SYmmetry(3), then this symmetry is conserved during the
We have found out that, fo,~0.8, even kinks moving time evolution. Indeed, in new coordinateg,=(un
with this maximal velocity cannot be reflected; hence all ~U-n+1)/2,7,=(Un+U_5+1)/2, the equations of motion
kinks are transformed in bound surface states. This behavidtave the forms

may be interpreted in terms of both dislocation dynamics its o

described by the FK model and nonlinear transport phenom- {n=8200= 2V (7t L)+ 3V (70— ),
ena, including those in biological systems. .

It seems reasonable to continue the study in two direc- &n(0)=0, {,(0)=0,
tions: (1) Higher values of misfit might be included to make )
the model more realistic in its description of dislocation dy- =827 = 3V (70t L0) =3V (70— Ln),
namics.(2) Other models ¢*, double-Morsgmight be ana- .
lyzed to study the effect of nonintegrability in the continuum m(0)=72,  7,(0)=7D.

limit and of the existence of shape modes. Numerical verifi- _ _ _
cation of existence of higher-dimensional surface modedhese equations obviously have a solution vif(t)=0 and
would also be very interesting. 70(1), satisfying
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